1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
#include "../descriptor.h"
#include <forstio/codec/data.hpp>
#include <iostream>
namespace kel {
namespace lbm {
namespace schema {
/**
* Basic distribution function
* Base type
* D
* Q
* Scalar factor
* D factor
* Q factor
*/
using T = Float32;
using DfCell2DType = CellType<T, 2, 5, 0, 0, 1>;
using CellInfo2DType = CellType<UInt8, 2, 5, 1, 0, 0>;
/**
* Basic type for simulation
*/
using Cell = CellData<
Member<DfCell2DType, "dfs">,
Member<CellInfo2DType, "info">
>;
}
template<typename T, size_t D, size_t Q, size_t SN, size_t DN, size_t QN>
struct cell_type {
using Type = schema::CellType<T, D, Q, SN, DN, QN>;
};
template<typename T>
class df_cell_view;
/**
* Minor helper for the AA-Pull Pattern
*/
template<size_t D, size_t Q, size_t SN, size_t DN, size_t QN>
class df_cell_view<cell_type<schema::T, D, Q, SN, DN, QN>> {
private:
std::array<std::decay_t<typename saw::native_data_type<schema::T>::type>*, QN> view_;
public:
df_cell_view(const std::array<std::decay_t<typename saw::native_data_type<schema::T>::type>*, QN>& view):
view_{view}
{}
};
template<size_t D, size_t Q>
class collision {
public:
typename saw::native_data_type<schema::T>::type relaxation_;
public:
std::array<typename saw::native_data_type<schema::T>::type,Q> equilibrium(
typename saw::native_data_type<schema::T>::type rho,
std::array<typename saw::native_data_type<schema::T>::type, D> vel
){
using dfi = df_info<schema::Descriptor<schema::T, D, Q>>;
typename std::array<saw::native_data_type<schema::T>::type,Q> eq;
for(std::size_t i = 0; i < eq.size(); ++i){
auto vel_c = (vel[0]*dfi::directions[i][0] + vel[1]*dfi::directions[i][1]);
auto vel_c_cs2 = vel_c / dfi::cs2;
eq[i] = dfi::weights[i] * rho * (
1
+ vel_c_cs2
+ vel_c_cs2 * vel_c_cs2
- ( vel[0] * vel[0] + vel[1] * vel[1] ) / ( 2. * dfi::cs2 )
);
}
return eq;
}
void compute_rho_u(
saw::data<schema::DfCell2DType>& dfs,
typename saw::native_data_type<schema::T>::type& rho,
std::array<typename saw::native_data_type<schema::T>::type, 2>& vel
){
using dfi = df_info<schema::Descriptor<schema::T, D, Q>>;
rho = 0;
std::fill(vel.begin(), vel.end(), 0);
for(size_t i = 0; i < Q; ++i){
rho += dfs.at(i).get();
vel[0] += dfi::directions[i][0] * dfs.at(i).get();
vel[1] += dfi::directions[i][1] * dfs.at(i).get();
}
vel[0] /= rho;
vel[1] /= rho;
}
};
}
}
constexpr size_t dim_size = 2;
constexpr size_t dim_x = 32;
constexpr size_t dim_y = 32;
struct rectangle {
std::array<size_t,4> data_;
rectangle(size_t x, size_t y, size_t w, size_t h):
data_{x,y,w,h}
{}
bool inside(size_t i, size_t j) const {
return !(i < data_[0] || i > (data_[0]+data_[2]) || j < data_[1] || j > (data_[1] +data_[3]));
}
};
template<typename Func, typename Schema, size_t Dim>
void apply_for_cells(Func&& func, saw::data<saw::schema::Array<Schema, Dim>>& dat){
for(std::size_t i = 0; i < dat.get_dim_size(0); ++i){
for(std::size_t j = 0; j < dat.get_dim_size(1); ++j){
func(dat.at(i,j), i, j);
}
}
}
void set_geometry(saw::data<kel::lbm::schema::Lattice<kel::lbm::schema::Cell,2>>& latt){
using namespace kel::lbm;
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
uint8_t val = 0;
if(i == 1){
val = 2;
}
if(j == 1 || (i+2) == dim_x || (j+2) == dim_y){
val = 3;
}
if(i == 0 || j == 0 || (i+1) == dim_x || (j+1) == dim_y){
val = 1;
}
cell.template get<"info">().at(0).set(val);
}, latt);
}
void set_initial_conditions(saw::data<kel::lbm::schema::Lattice<kel::lbm::schema::Cell,2>>& latt){
using namespace kel::lbm;
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
(void) i;
(void) j;
cell.template get<"dfs">().at(0).set(1.0);
}, latt);
}
void lbm_step(
saw::data<kel::lbm::schema::Lattice<kel::lbm::schema::Cell,2>>& old_latt,
saw::data<kel::lbm::schema::Lattice<kel::lbm::schema::Cell,2>>& new_latt
){
}
int main(){
using namespace kel::lbm;
saw::data<
schema::FixedArray<
schema::Lattice<kel::lbm::schema::Cell, 2>, 2
>
,saw::encode::Native
> lattices; //{dim_x, dim_y};
for(uint64_t i = 0; i < lattices.get_dim_size<0u>(); ++i){
lattices.at(i) = {dim_x, dim_y};
}
/**
* Set meta information describing what this cell is
*/
set_geometry(lattices.at(0));
/**
*
*/
set_initial_conditions(lattices.at(0));
/**
* Timeloop
*/
/**
* Print basic setup info
*/
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
// Not needed
(void) i;
std::cout<<static_cast<uint32_t>(cell.template get<"info">().at(0).get());
if( (j+1) < dim_y){
std::cout<<" ";
}else{
std::cout<<"\n";
}
}, lattices.at(0));
std::cout<<"\n";
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
// Not needed
(void) i;
std::cout<<cell.template get<"dfs">().at(0).get();
if( (j+1) < dim_y){
std::cout<<" ";
}else{
std::cout<<"\n";
}
}, lattices.at(0));
uint64_t lattice_steps = 32;
bool even_step = true;
for(uint64_t step = 0; step < lattice_steps; ++step){
uint64_t old_lattice_index = even_step ? 0 : 1;
uint64_t new_lattice_index = even_step ? 1 : 0;
lbm_step(lattices.at(old_lattice_index), lattices.at(new_lattice_index));
even_step = !even_step;
}
/**
* Flush cout
*/
std::cout<<"\n\n";
std::cout.flush();
return 0;
}
|