diff options
| author | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-12 10:33:56 +0100 |
|---|---|---|
| committer | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-12 10:33:56 +0100 |
| commit | 96af1217da5d3851faf5fad2eb2b8365b29a4bf0 (patch) | |
| tree | 72fe8e51fe21b58033236b6954964ad29a167c31 /typst | |
| parent | 575b5b337e35c337caca39810974f51780fc6522 (diff) | |
| download | phd-fluid_mechanics_report-96af1217da5d3851faf5fad2eb2b8365b29a4bf0.tar.gz | |
progress
Diffstat (limited to 'typst')
| -rw-r--r-- | typst/main.typ | 11 |
1 files changed, 9 insertions, 2 deletions
diff --git a/typst/main.typ b/typst/main.typ index 9ca5a8c..136dc6c 100644 --- a/typst/main.typ +++ b/typst/main.typ @@ -58,15 +58,22 @@ velocity field $u(x,t)$ the Navier-Stokes formulation is primarly defined by the #math.equation( block: true, -$ ρ((∂)/(∂t)u + (u · ∇)u) = −∇p + μ∇²u + f,\ +$ rho D/(Dt)u = ρ((∂)/(∂t)u + (u · ∇)u) = −∇p + μ∇²u + f,\ ∇ · u = 0 $ ) +The left side represents the material derivative and thus the inerial acceleration, while the right side contains the pressure gradient, +viscous diffusion and potential body forces such as gravity. + While we are often interested in Navier-Stokes flows, a generalized analytical solution does not exist, most analytical approaches rely on a set of restrictions or assumptions. -With the Reynolds number defined by +One key parameter is the Reynolds number, previously mentioned before, defined as: + +#math.equation( +block: true, $ "Re" = (rho U L ) / mu $ +) Luckily we decided to work on a fluid which tends $"Re" arrow 0$ or at least $"Re" << 1$ where due to the viscous forces the inertial term is negligable and is assumed to be zero. |
