summaryrefslogtreecommitdiff
path: root/typst
diff options
context:
space:
mode:
authorClaudius "keldu" Holeksa <mail@keldu.de>2025-11-11 19:02:26 +0100
committerClaudius "keldu" Holeksa <mail@keldu.de>2025-11-11 19:02:26 +0100
commit15ab84f083234ea6eddac6e1481991bbfd86e44d (patch)
tree09c070872910fcf1c4a83139c4db15886abd1957 /typst
parente6a686e520a4b856496b3b0847c021572adc0e53 (diff)
downloadphd-fluid_mechanics_report-15ab84f083234ea6eddac6e1481991bbfd86e44d.tar.gz
progress
Diffstat (limited to 'typst')
-rw-r--r--typst/main.typ3
1 files changed, 2 insertions, 1 deletions
diff --git a/typst/main.typ b/typst/main.typ
index 4b61b2b..8ff3227 100644
--- a/typst/main.typ
+++ b/typst/main.typ
@@ -40,7 +40,7 @@ Explores the effect of it in porous media and examines the more recent particle
== Stokes Flow
// Write about Navier
-The incompressible Navier Stokes equations are derived from Newton are a set of equations
+The incompressible Navier Stokes equations are a set of equations
#math.equation(
block: true,
@@ -52,6 +52,7 @@ While we are often interested in Navier-Stokes flows, a generalized analytical s
most analytical approaches rely on a set of restrictions or assumptions.
Luckily we decided to work on a fluid which tends $"Re" arrow 0$ where due to the viscous forces
the inertial term is negligable and is assumed to be zero.
+Which is why we arrive at this term
// Stokes
#math.equation(