diff options
| author | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-11 18:57:02 +0100 |
|---|---|---|
| committer | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-11 18:57:02 +0100 |
| commit | e6a686e520a4b856496b3b0847c021572adc0e53 (patch) | |
| tree | 381dc4f8595af39a9ec7f2a3951a130e3ff4c7da | |
| parent | 23a88531bddef0194659e99a820158803587385f (diff) | |
| download | phd-fluid_mechanics_report-e6a686e520a4b856496b3b0847c021572adc0e53.tar.gz | |
progress
| -rw-r--r-- | typst/main.typ | 7 |
1 files changed, 4 insertions, 3 deletions
diff --git a/typst/main.typ b/typst/main.typ index 425cf02..4b61b2b 100644 --- a/typst/main.typ +++ b/typst/main.typ @@ -48,9 +48,10 @@ $ ρ((∂)/(∂t)u + (u · ∇)u) = −∇p + μ∇²u + f,\ ∇ · u = 0 $ ) -While we are often interested in Navier-Stokes flows, on fluid which tends $"Re" arrow 0$ fluid the inertial term is negligable -and is assumed to be zero. - +While we are often interested in Navier-Stokes flows, a generalized analytical solution does not exist, +most analytical approaches rely on a set of restrictions or assumptions. +Luckily we decided to work on a fluid which tends $"Re" arrow 0$ where due to the viscous forces +the inertial term is negligable and is assumed to be zero. // Stokes #math.equation( |
