summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 17:24:29 +0100
committerClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 17:24:29 +0100
commita28bbff7299bb8cac127a98a1b3c1f42f5726ebd (patch)
tree078360973765749d38688593b0c6de5fb1dc32bf
parentc141032c7deb98ceda0b9857b3fb3e31352a5992 (diff)
downloadphd-fluid_mechanics_report-a28bbff7299bb8cac127a98a1b3c1f42f5726ebd.tar.gz
progress
-rw-r--r--typst/main.typ2
1 files changed, 1 insertions, 1 deletions
diff --git a/typst/main.typ b/typst/main.typ
index 1995bb3..6c8fc26 100644
--- a/typst/main.typ
+++ b/typst/main.typ
@@ -251,7 +251,7 @@ $
with $lambda$ being the characteristic wavelength of the interaction, $k_B$ the Boltzmann constant, $T$ the absolute temperature, "Z" is the valence
of the electrolyte, "e" is the electron charge, $A_"iLj"$ the Hamaker constant of the particle, i, the particle j and the liquid medium L,
$R_i$,$R_j$ are the particle radii with $h_"ij" << R_i,R_j$, the equivalent radius $r_"ij" = R_i R_j / (R_i + R_j)$, the dielectric constant
-$epsilon_0 epsilon_r$, the surface potential $psi_i$ of the particle, $kappa^(-1) = sqrt(epsilon_0 epsilon_r k_B T / (2 dot 10^3 N_A e^2 I_S))$
+$epsilon_0 epsilon_r$, the surface potential $psi_i$ of the particle, $kappa^(-1) = sqrt((epsilon_0 epsilon_r k_B T ) / (2 dot 10^3 N_A e^2 I_S))$
is the Debye screening length with $I_S$ being the ionic electrolyte strength.
#math.equation(