summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 17:23:51 +0100
committerClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 17:23:51 +0100
commit9f0af1243d07334d8992b135e37cbb31caa9a537 (patch)
treee08b292b65c2efb1b5078820394f09bab81024fe
parentc55fd64fb4dfe01fcfff273ed2b36bc9f64ec525 (diff)
downloadphd-fluid_mechanics_report-9f0af1243d07334d8992b135e37cbb31caa9a537.tar.gz
progress
-rw-r--r--typst/main.typ2
1 files changed, 1 insertions, 1 deletions
diff --git a/typst/main.typ b/typst/main.typ
index 329041f..319aec3 100644
--- a/typst/main.typ
+++ b/typst/main.typ
@@ -251,7 +251,7 @@ $
with $lambda$ being the characteristic wavelength of the interaction, $k_B$ the Boltzmann constant, $T$ the absolute temperature, "Z" is the valence
of the electrolyte, "e" is the electron charge, $A_"iLj"$ the Hamaker constant of the particle, i, the particle j and the liquid medium L,
$R_i$,$R_j$ are the particle radii with $h_"ij" << R_i,R_j$, the equivalent radius $r_"ij" = R_i R_j / (R_i + R_j)$, the dielectric constant
-$epsilon_0 epsilon_r$, the surface potential $psi_i$ of the particle, $kappa^(-1) = sqrt(epsilon_0 epsilon_r k_B T / (2e3 N_A e^2 I_S))$
+$epsilon_0 epsilon_r$, the surface potential $psi_i$ of the particle, $kappa^(-1) = sqrt(epsilon_0 epsilon_r k_B T / (2 cdot 10^3 N_A e^2 I_S))$
is the Debye screening length with $I_S$ being the ionic electrolyte strength.
#math.equation(