summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 10:33:56 +0100
committerClaudius "keldu" Holeksa <mail@keldu.de>2025-11-12 10:33:56 +0100
commit96af1217da5d3851faf5fad2eb2b8365b29a4bf0 (patch)
tree72fe8e51fe21b58033236b6954964ad29a167c31
parent575b5b337e35c337caca39810974f51780fc6522 (diff)
downloadphd-fluid_mechanics_report-96af1217da5d3851faf5fad2eb2b8365b29a4bf0.tar.gz
progress
-rw-r--r--typst/main.typ11
1 files changed, 9 insertions, 2 deletions
diff --git a/typst/main.typ b/typst/main.typ
index 9ca5a8c..136dc6c 100644
--- a/typst/main.typ
+++ b/typst/main.typ
@@ -58,15 +58,22 @@ velocity field $u(x,t)$ the Navier-Stokes formulation is primarly defined by the
#math.equation(
block: true,
-$ ρ((∂)/(∂t)u + (u · ∇)u) = −∇p + μ∇²u + f,\
+$ rho D/(Dt)u = ρ((∂)/(∂t)u + (u · ∇)u) = −∇p + μ∇²u + f,\
∇ · u = 0 $
)
+The left side represents the material derivative and thus the inerial acceleration, while the right side contains the pressure gradient,
+viscous diffusion and potential body forces such as gravity.
+
While we are often interested in Navier-Stokes flows, a generalized analytical solution does not exist,
most analytical approaches rely on a set of restrictions or assumptions.
-With the Reynolds number defined by
+One key parameter is the Reynolds number, previously mentioned before, defined as:
+
+#math.equation(
+block: true,
$ "Re" = (rho U L ) / mu
$
+)
Luckily we decided to work on a fluid which tends $"Re" arrow 0$ or at least $"Re" << 1$ where due to the viscous forces
the inertial term is negligable and is assumed to be zero.