diff options
| author | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-11 19:02:26 +0100 |
|---|---|---|
| committer | Claudius "keldu" Holeksa <mail@keldu.de> | 2025-11-11 19:02:26 +0100 |
| commit | 15ab84f083234ea6eddac6e1481991bbfd86e44d (patch) | |
| tree | 09c070872910fcf1c4a83139c4db15886abd1957 | |
| parent | e6a686e520a4b856496b3b0847c021572adc0e53 (diff) | |
| download | phd-fluid_mechanics_report-15ab84f083234ea6eddac6e1481991bbfd86e44d.tar.gz | |
progress
| -rw-r--r-- | typst/main.typ | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/typst/main.typ b/typst/main.typ index 4b61b2b..8ff3227 100644 --- a/typst/main.typ +++ b/typst/main.typ @@ -40,7 +40,7 @@ Explores the effect of it in porous media and examines the more recent particle == Stokes Flow // Write about Navier -The incompressible Navier Stokes equations are derived from Newton are a set of equations +The incompressible Navier Stokes equations are a set of equations #math.equation( block: true, @@ -52,6 +52,7 @@ While we are often interested in Navier-Stokes flows, a generalized analytical s most analytical approaches rely on a set of restrictions or assumptions. Luckily we decided to work on a fluid which tends $"Re" arrow 0$ where due to the viscous forces the inertial term is negligable and is assumed to be zero. +Which is why we arrive at this term // Stokes #math.equation( |
