1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
#include "../c++/descriptor.hpp"
/**
*/
#include <forstio/codec/data.hpp>
#include <iostream>
#include <fstream>
#include <cmath>
namespace kel {
namespace lbm {
namespace sch {
using namespace saw::schema;
/**
* Basic distribution function
* Base type
* D
* Q
* Scalar factor
* D factor
* Q factor
*/
using T = Float32;
using D2Q5 = Descriptor<2,5>;
using D2Q9 = Descriptor<2,9>;
template<typename Desc>
using DfCell = Cell<T, Desc, 0, 0, 1>;
template<typename Desc>
using CellInfo = Cell<UInt8, D2Q9, 1, 0, 0>;
/**
* Basic type for simulation
*/
template<typename Desc>
using CellStruct = Struct<
Member<DfCell<Desc>, "dfs">,
Member<DfCell<Desc>, "dfs_old">,
Member<CellInfo<Desc>, "info">
>;
using CavityFieldD2Q9 = CellField<D2Q9, CellStruct<D2Q9>>;
}
/**
* Calculate the macroscopic variables rho and u in Lattice Units.
*/
template<typename Desc>
void compute_rho_u (
saw::data<sch::DfCell<Desc>>& dfs,
typename saw::native_data_type<sch::T>::type& rho,
std::array<typename saw::native_data_type<sch::T>::type, 2>& vel
)
{
using dfi = df_info<sch::T, Desc>;
rho = 0;
std::fill(vel.begin(), vel.end(), 0);
for(size_t i = 0; i < Desc::Q; ++i){
rho += dfs(i).get();
vel[0] += dfi::directions[i][0] * dfs(i).get();
vel[1] += dfi::directions[i][1] * dfs(i).get();
}
vel[0] /= rho;
vel[1] /= rho;
}
/**
* Unsure if feasible. I would have a rho normalization on the dfs and then I would use the const rho_computation
*/
template<typename Desc>
void compute_const_rho_u (
saw::data<sch::DfCell<Desc>>& dfs,
const typename saw::native_data_type<sch::T>::type rho,
std::array<typename saw::native_data_type<sch::T>::type, 2>& vel
)
{
using dfi = df_info<sch::T, Desc>;
saw::native_data_type<sch::T>::type real_rho = 0;
std::fill(vel.begin(), vel.end(), 0);
for(size_t i = 0; i < Desc::Q; ++i){
real_rho += dfs(i).get();
vel[0] += dfi::directions[i][0] * dfs(i).get();
vel[1] += dfi::directions[i][1] * dfs(i).get();
}
for(size_t i = 0; i < Desc::Q; ++i){
dfs(i).set(dfs(i).get() * (rho/real_rho));
}
vel[0] *= real_rho / (rho*rho);
vel[1] *= real_rho / (rho*rho);
}
/**
* Calculates the equilibrium for each direction
*/
template<typename Desc>
std::array<typename saw::native_data_type<sch::T>::type,Desc::Q> equilibrium(
typename saw::native_data_type<sch::T>::type rho,
const std::array<typename saw::native_data_type<sch::T>::type, Desc::D>& vel
){
using dfi = df_info<sch::T, Desc>;
typename std::array<saw::native_data_type<sch::T>::type,Desc::Q> eq;
for(std::size_t i = 0; i < eq.size(); ++i){
auto vel_c = (vel[0]*dfi::directions[i][0] + vel[1]*dfi::directions[i][1]);
auto vel_c_cs2 = vel_c * dfi::inv_cs2;
eq[i] = dfi::weights[i] * rho * (
1.0
+ vel_c_cs2
- dfi::inv_cs2 * 0.5 * ( vel[0] * vel[0] + vel[1] * vel[1] )
+ vel_c_cs2 * vel_c_cs2 * 0.5
);
}
return eq;
}
/**
* A reason for why a component based design is really good can be seen in my LR solver example
*
* Add Expression Templates and you're golden.
*/
template<typename Kind, typename Desc>
class component;
/*
template<typename T, typename Encode>
class df_cell_view;
*/
/**
* Minor helper for the AA-Pull Pattern, so I can use only one lattice
*
* Am I sure I want to use AA this way?
* Esoteric Twist technically reduces the needed memory access footprint
*/
/*
template<typename Desc, size_t SN, size_t DN, size_t QN, typename Encode>
class df_cell_view<sch::Cell<sch::T, Desc, SN, DN, QN>, Encode> {
public:
using Schema = sch::Cell<sch::T,Desc,SN,DN,QN>;
private:
std::array<std::decay_t<typename saw::native_data_type<sch::T>::type>*, QN> view_;
public:
df_cell_view(const std::array<std::decay_t<typename saw::native_data_type<sch::T>::type>*, QN>& view):
view_{view}
{}
};
*/
namespace cmpt {
struct BounceBack{};
struct MovingWall {};
struct BGK {};
struct ConstRhoBGK {};
}
/**
* Full-Way BounceBack. I suspect that the moving wall requires half-way bounce back.
*/
template<typename Desc>
class component<cmpt::BounceBack,Desc> {
public:
void apply(saw::data<sch::DfCell<Desc>>& dfs){
using dfi = df_info<sch::T,Desc>;
// Technically use .copy()
auto df_cpy = dfs;
for(uint64_t i = 1u; i < Desc::Q; ++i){
dfs({i}) = df_cpy({dfi::opposite_index.at(i)});
}
}
};
/**
* Full-Way moving wall Bounce back, something is not right here.
* Technically it should reflect properly.
*/
template<typename Desc>
class component<cmpt::MovingWall, Desc> {
public:
std::array<typename saw::native_data_type<sch::T>::type, Desc::D> lid_vel;
public:
void apply(
saw::data<sch::DfCell<Desc>>& dfs
){
using dfi = df_info<sch::T,Desc>;
// Technically use .copy()
/*
auto dfs_cpy = dfs;
for(uint64_t i = 0u; i < Desc::Q; ++i){
dfs({dfi::opposite_index.at(i)}) = dfs_cpy({i}) - 2.0 * dfi::weights[i] * 1.0 * ( lid_vel[0] * dfi::directions[i][0] + lid_vel[1] * dfi::directions[i][1]) * dfi::inv_cs2;
}
*/
}
};
template<typename Desc>
class component<cmpt::BGK, Desc> {
public:
typename saw::native_data_type<sch::T>::type relaxation_;
public:
void apply(saw::data<sch::DfCell<Desc>>& dfs){
typename saw::native_data_type<sch::T>::type rho;
std::array<typename saw::native_data_type<sch::T>::type, Desc::D> vel;
compute_rho_u<Desc>(dfs,rho,vel);
auto eq = equilibrium<Desc>(rho,vel);
for(uint64_t i = 0u; i < Desc::Q; ++i){
dfs({i}).set(dfs({i}).get() + (1.0 / relaxation_) * (eq[i] - dfs({i}).get()));
}
}
};
template<typename Desc>
class component<cmpt::ConstRhoBGK, Desc> {
public:
typename saw::native_data_type<sch::T>::type relaxation_;
typename saw::native_data_type<sch::T>::type rho_;
public:
void apply(saw::data<sch::DfCell<Desc>>& dfs){
std::array<typename saw::native_data_type<sch::T>::type, Desc::D> vel;
compute_const_rho_u<Desc>(dfs,rho_,vel);
auto eq = equilibrium<Desc>(rho_,vel);
for(uint64_t i = 0u; i < Desc::Q; ++i){
dfs({i}).set(dfs({i}).get() + (1.0 / relaxation_) * (eq[i] - dfs({i}).get()));
}
}
};
}
}
constexpr size_t dim_size = 2;
constexpr size_t dim_x = 128;
constexpr size_t dim_y = 128;
template<typename Func>
void apply_for_cells(Func&& func, saw::data<kel::lbm::sch::CavityFieldD2Q9>& dat){
for(std::size_t i = 0; i < dat.meta().at({1u}).get(); ++i){
for(std::size_t j = 0; j < dat.meta().at({0u}).get(); ++j){
saw::data<saw::schema::UInt64> di{i};
saw::data<saw::schema::UInt64> dj{j};
auto& cell_v = dat({{dj,di}});
func(cell_v, j, i);
}
}
}
void set_geometry(saw::data<kel::lbm::sch::CavityFieldD2Q9>& latt){
using namespace kel::lbm;
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
uint8_t val = 0;
if(j == 1){
val = 2u;
}
if(i == 1 || (i+2) == dim_x || (j+2) == dim_y){
val = 3u;
}
if(i > 1 && (i+2) < dim_x && j > 1 && (j+2) < dim_y){
val = 1u;
}
if(i == 0 || j == 0 || (i+1) == dim_x || (j+1) == dim_y){
val = 0u;
}
cell.template get<"info">()(0u).set(val);
}, latt);
}
void set_initial_conditions(saw::data<kel::lbm::sch::CavityFieldD2Q9>& latt){
using namespace kel::lbm;
typename saw::native_data_type<sch::T>::type rho = 1.0;
{
std::array<typename saw::native_data_type<sch::T>::type, sch::D2Q9::D> vel = {0.0, 0.0};
auto eq = equilibrium<sch::D2Q9>(rho, vel);
apply_for_cells([&eq](auto& cell, std::size_t i, std::size_t j){
(void) i;
(void) j;
auto& dfs = cell.template get<"dfs">();
auto& dfs_old = cell.template get<"dfs_old">();
auto info = cell.template get<"info">()(0u).get();
for(uint64_t k = 0; k < sch::D2Q9::Q; ++k){
dfs(k).set(eq[k]);
dfs_old(k).set(eq[k]);
}
}, latt);
}
{
std::array<typename saw::native_data_type<sch::T>::type, sch::D2Q9::D> vel = {0.1, 0.0};
auto eq = equilibrium<sch::D2Q9>(rho, vel);
apply_for_cells([&eq](auto& cell, std::size_t i, std::size_t j){
(void) i;
(void) j;
auto& dfs = cell.template get<"dfs">();
auto& dfs_old = cell.template get<"dfs_old">();
auto info = cell.template get<"info">()(0u).get();
if(info == 2u){
for(uint64_t k = 0; k < sch::D2Q9::Q; ++k){
dfs(k).set(eq[k]);
dfs_old(k).set(eq[k]);
}
}
}, latt);
}
}
void lbm_step(
saw::data<kel::lbm::sch::CavityFieldD2Q9>& latt,
bool even_step
){
using namespace kel::lbm;
using dfi = df_info<sch::T,sch::D2Q9>;
component<cmpt::BGK,sch::D2Q9> coll;
coll.relaxation_ = 0.5384;
component<cmpt::ConstRhoBGK,sch::D2Q9> rho_coll;
rho_coll.relaxation_ = 0.5384;
rho_coll.rho_ = 1.0;
component<cmpt::BounceBack,sch::D2Q9> bb;
component<cmpt::MovingWall,sch::D2Q9> bb_lid;
bb_lid.lid_vel = {0.1,0.0};
// Collide
apply_for_cells([&](auto& cell, std::size_t i, std::size_t j){
auto& df = even_step ? cell.template get<"dfs_old">() : cell.template get<"dfs">();
auto& info = cell.template get<"info">();
auto info_val = info({0u}).get();
switch(info_val){
case 1u:
coll.apply(df);
break;
case 2u:
// bb.apply(df);
bb_lid.apply(df);
break;
case 3u:
bb.apply(df);
break;
}
}, latt);
// Stream
for(uint64_t i = 1; (i+1) < latt.template get_dim_size<0>().get(); ++i){
for(uint64_t j = 1; (j+1) < latt.template get_dim_size<1>().get(); ++j){
auto& cell = latt({{i,j}});
auto& df_new = even_step ? cell.template get<"dfs">() : cell.template get<"dfs_old">();
auto& info_new = cell.template get<"info">();
if(info_new({0u}).get() > 0u && info_new({0u}).get() != 2u){
for(uint64_t k = 0u; k < sch::D2Q9::Q; ++k){
auto dir = dfi::directions[dfi::opposite_index[k]];
auto& cell_dir_old = latt({{i+dir[0],j+dir[1]}});
auto& df_old = even_step ? cell_dir_old.template get<"dfs_old">() : cell_dir_old.template get<"dfs">();
auto& info_old = cell_dir_old.template get<"info">();
if( info_old({0}).get() == 2u ){
auto& df_old_loc = even_step ? latt({{i,j}}).template get<"dfs_old">() : latt({{i,j}}).template get<"dfs">();
df_new({k}) = df_old_loc({dfi::opposite_index.at(k)}) - 2.0 * dfi::inv_cs2 * dfi::weights.at(k) * 1.0 * ( bb_lid.lid_vel[0] * dir[0] + bb_lid.lid_vel[1] * dir[1]);
// dfs({dfi::opposite_index.at(i)}) = dfs_cpy({i}) - 2.0 * dfi::weights[i] * 1.0 * ( lid_vel[0] * dfi::directions[i][0] + lid_vel[1] * dfi::directions[i][1]) * dfi::inv_cs2;
} else {
df_new({k}) = df_old({k});
}
}
}
}
}
}
int main(){
using namespace kel::lbm;
saw::data<sch::FixedArray<sch::UInt64,sch::D2Q9::D>> dim{{dim_x, dim_y}};
saw::data<sch::CavityFieldD2Q9, saw::encode::Native> lattice{dim};
// auto& df_field = lattices.at(0).template get<"dfs">();
//for(uint64_t i = 0; i < df_field.get_dim_size<0u>(); ++i){
// lattices.at(i) = {dim_x, dim_y};
//}
/**
* Set meta information describing what this cell is
*/
set_geometry(lattice);
/**
*
*/
set_initial_conditions(lattice);
/**
* Timeloop
*/
/**
* Print basic setup info
*/
apply_for_cells([](auto& cell, std::size_t i, std::size_t j){
// Not needed
(void) j;
std::cout<<(static_cast<uint32_t>(cell.template get<"info">()({0}).get()));
if( (i+1) < dim_x){
std::cout<<" ";
}else{
std::cout<<"\n";
}
}, lattice);
uint64_t lattice_steps = 512000u;
bool even_step = true;
uint64_t print_every = 256u;
uint64_t file_no = 0u;
for(uint64_t step = 0; step < lattice_steps; ++step){
if(step % print_every == 0u){
std::cout<<"\n";
typename saw::native_data_type<sch::T>::type sum = 0.0;
apply_for_cells([&](auto& cell, std::size_t i, std::size_t j){
auto& dfs = cell.template get<"dfs">();
typename saw::native_data_type<sch::T>::type rho;
std::array<typename saw::native_data_type<sch::T>::type, sch::D2Q9::D> vel;
compute_rho_u<sch::D2Q9>(dfs,rho,vel);
if(i > 1 && (i+2) < dim_x && j > 1 && (j+2) < dim_y){
sum += rho;
}
auto angle = std::atan2(vel[1],vel[0]);
double vel_mag = vel[1] * vel[1] + vel[0] * vel[0];
auto dir_char = [&]() -> std::string_view {
/**
* Flipped y due to print order
*/
constexpr auto pi = M_PI;
return "■";
if(vel_mag < 1e-4){
return "•";
}
if(angle > 7.0 / 8.0 * pi){
return "←";
}
if(angle > 5.0 / 8.0 * pi){
return "↙";
}
if(angle > 3.0 / 8.0 * pi){
return "↓";
}
if(angle > 1.0 / 8.0 * pi){
return "↘";
}
if(angle > -1.0 / 8.0 * pi){
return "→";
}
if(angle > -3.0 / 8.0 * pi){
return "↗";
}
if(angle > -5.0 / 8.0 * pi){
return "↑";
}
if(angle > -7.0 / 8.0 * pi){
return "↖";
}
return "←";
}();
std::array<uint32_t,3u> rgb_start{64,64,255};
std::array<uint32_t,3u> rgb_stop{255,64,64};
std::array<uint32_t,3u> rgb_middle{255,255,255};
auto col_interpol = [&](){
std::array<uint32_t, 3u> rgb_interpol = rgb_start;
double vel_mag_cut = std::min(1.0,std::max(vel_mag/(0.07*0.07),0.0));
if(vel_mag_cut < 0.5){
uint32_t vel_mag_i = static_cast<uint32_t>(2.0 * vel_mag_cut * 256);
for(uint8_t i = 0u; i < 3u; ++i){
rgb_interpol[i] = (rgb_middle[i] * vel_mag_i + (256-vel_mag_i) * rgb_start[i]) / 256;
}
}else{
uint32_t vel_mag_i = static_cast<uint32_t>((2.0*(vel_mag_cut-0.5)) * 256);
for(uint8_t i = 0u; i < 3u; ++i){
rgb_interpol[i] = (rgb_stop[i] * vel_mag_i + (256-vel_mag_i) * rgb_middle[i]) / 256;
}
}
return rgb_interpol;
};
auto rgb_interpol = col_interpol();
std::cout<<"\x1b[38;2;"<<rgb_interpol[0]<<";"<<rgb_interpol[1]<<";"<<rgb_interpol[2]<<"m"<<dir_char;
if( (i+1) < dim_x){
std::cout<<" ";
}else{
std::cout<<"\n";
}
}, lattice);
std::cout<<"\x1b[38;2;255;255;255m";
/// std::cout<<"Average rho: "<<(sum / ((dim_x-4)*(dim_y-4)))<<std::endl;
std::cout.flush();
std::ofstream vtk_file{"tmp/cavity_2d_"+std::to_string(file_no)+".vtk"};
vtk_file <<"# vtk DataFile Version 3.0\n";
vtk_file <<"Velocity Cavity2D example\n";
vtk_file <<"ASCII\n";
vtk_file <<"DATASET STRUCTURED_POINTS\n";
vtk_file <<"DIMENSIONS "<< dim_x <<" "<<dim_y<<" 1\n";
vtk_file <<"SPACING 1.0 1.0 1.0\n";
vtk_file <<"ORIGIN 0.0 0.0 0.0\n";
vtk_file <<"POINT_DATA "<<(dim_x*dim_y)<<"\n";
vtk_file <<"VECTORS Velocity float\n";
apply_for_cells([&](auto& cell, std::size_t i, std::size_t j){
auto dfs = even_step ? cell.template get<"dfs_old">() : cell.template get<"dfs">();
typename saw::native_data_type<sch::T>::type rho;
std::array<typename saw::native_data_type<sch::T>::type, sch::D2Q9::D> vel;
compute_rho_u<sch::D2Q9>(dfs,rho,vel);
vtk_file << static_cast<float>(vel[0u]) << " " << static_cast<float>(vel[1u])<<" 0.0\n";
}, lattice);
++file_no;
}
lbm_step(lattice, even_step);
even_step = !even_step;
}
/**
* Flush cout
*/
std::cout<<"\n\n";
std::cout.flush();
return 0;
}
|