#include "../c++/lbm.hpp" #include "../c++/collision.hpp" #include "../c++/boundary.hpp" #include "../c++/iterator.hpp" #include "../c++/particle/geometry/circle.hpp" #include #include #include namespace kel { namespace lbm { namespace sch { using namespace saw::schema; /** * Basic distribution function * Base type * D * Q * Scalar factor * D factor * Q factor */ using T = Float32; // using T = MixedPrecision; using D2Q5 = Descriptor<2u,5u>; using D2Q9 = Descriptor<2u,9u>; template using DfCell = Cell; template using CellInfo = Cell; template using CellParticleMask = Cell; template using CellForceField = Cell; /** * Basic type for simulation */ template using CellStruct = Struct< Member, "dfs">, Member, "dfs_old">, Member, "info">, // Member, "particle_mask">, Member, "force"> >; template using MacroStruct = Struct< Member, "velocity">, Member, Member, Member, "force"> >; template using GeometryStruct = Struct< Member >; using CavityFieldD2Q9 = CellField>; } } } void set_geometry(saw::data& latt){ using namespace kel::lbm; auto meta = latt.meta(); /** * Set ghost */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); info({0u}).set(0u); }, {{0u,0u}}, meta); /** * Set wall */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); info({0u}).set(1u); }, {{0u,0u}}, meta, {{1u,1u}}); /** * Set fluid */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); info({0u}).set(2u); }, {{0u,0u}}, meta, {{2u,2u}}); /** * Set inflow */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); info({0u}).set(3u); }, {{1u,0u}}, {{2u,meta.at({1u})}}, {{0u,2u}}); /** * Set outflow */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); info({0u}).set(4u); }, {{meta.at({0u})-2u,0u}}, {{meta.at({0u})-1u, meta.at({1u})}}, {{0u,2u}}); /** * Set channel wall */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); saw::data> area{{meta.at({0u})-8u, meta.at({1u})-2u}}; double safety_start = 0.1*area.at({0u}).get(); double safety_width = 0.2*area.at({1u}).get(); double ch_width = (area.at({1u}).get()-safety_width) * 0.5; double ch_length = (area.at({0u}).get()-safety_start) * 0.5; saw::data> middle{{meta.at({0u})/2u, meta.at({1u})/2u}}; // r^2 = (r-w/2)^2 + l^2 double r_c = ch_length * ch_length; double r = r_c / (2.0 * ch_width); double top_pos = middle.at({1u}).get() + r + safety_width; double bot_pos = middle.at({1u}).get() - r - safety_width; double mid = middle.at({0u}).get(); double r_2 = r*r; double dist_top = (top_pos - index.at({1u}).get()); double dist_bot = (bot_pos - index.at({1u}).get()); double dist_mid = (mid - index.at({0u}).get()); double dist_top_sq = dist_top * dist_top + dist_mid * dist_mid; double dist_bot_sq = dist_bot * dist_bot + dist_mid * dist_mid; if(dist_top_sq < r_2 or dist_bot_sq < r_2){ info({0u}).set(1u); } }, {{0u,0u}}, meta, {{4u,1u}}); /** * Set channel circular obstacle */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); saw::data> area{{meta.at({0u})-4u, meta.at({1u})-4u}}; double pos_x = 0.8 * area.at({0u}).get(); double pos_y = 0.5 * area.at({1u}).get(); double dist_x = pos_x - index.at({0u}).get(); double dist_y = pos_y - index.at({1u}).get(); double r = 16.0; double dist_sq = dist_x * dist_x + dist_y * dist_y; if(dist_sq < r*r){ info({0u}).set(1u); } }, {{0u,0u}}, meta, {{2u,2u}}); } void set_initial_conditions(saw::data& latt){ using namespace kel::lbm; saw::data rho{1.0}; saw::data> vel{{0.0,0.0}}; auto eq = equilibrium(rho, vel); auto meta = latt.meta(); /** * Set distribution */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& dfs = cell.template get<"dfs">(); auto& dfs_old = cell.template get<"dfs_old">(); for(saw::data k = 0; k < saw::data{sch::D2Q9::Q}; ++k){ dfs(k) = eq.at(k); dfs_old(k) = eq.at(k); } }, {{0u,0u}}, meta); } void add_particles(kel::lbm::particle_system& part_sys){ using namespace kel::lbm; saw::data> part; auto& p_mask = part.template get<"mask">(); { particle_circle_geometry geo; p_mask = geo.template generate_mask(40u,0u); } auto& rigid_body = part.template get<"rigid_body">(); auto& p_size = part.template get<"size">(); auto& pos = rigid_body.template get<"position">(); auto& old_pos = rigid_body.template get<"position_old">(); { pos.at({{0u}}) = {32u}; pos.at({{1u}}) = {64u}; old_pos.at({{0u}}) = {32u}; old_pos.at({{1u}}) = {64u}; p_size = {1.0}; } for(uint64_t i = 0; i < 1; ++i){ for(uint64_t j = 0; j < 1; ++j){ pos.at({{0u}}) = {static_cast::type>(32u + j * 8u)}; pos.at({{1u}}) = {static_cast::type>(64u + i * 8u)}; old_pos = pos; auto eov = part_sys.add_particle(part); if(eov.is_error()){ exit(-1); } } } } void couple_particles_to_lattice( kel::lbm::particle_system& part_sys, saw::data& latt, saw::data,kel::lbm::sch::D2Q9::D>>& macros, saw::data time_step ){ using namespace kel::lbm; (void) time_step; auto meta = latt.meta(); using dfi = df_info; for(saw::data i{0u}; i < part_sys.size(); ++i){ auto& part = part_sys.at(i); auto& p_rb = part.template get<"rigid_body">(); auto& p_pos = p_rb.template get<"position">(); auto& p_pos_old = p_rb.template get<"position_old">(); auto& p_rot = p_rb.template get<"rotation">(); auto& p_acc = p_rb.template get<"acceleration">(); p_acc.at({{0u}}).set(0.0); p_acc.at({{1u}}).set(0.0); auto p_vel = p_pos - p_pos_old; auto& p_mask = part.template get<"mask">(); auto& p_size = part.template get<"size">(); // Rotated x-dir saw::data> x_dir{{ p_size * saw::data{std::cos(p_rot.get())}, p_size * saw::data{-std::sin(p_rot.get())} }}; // Rotated y-dir saw::data> y_dir{{ p_size * saw::data{std::sin(p_rot.get())}, p_size * saw::data{std::cos(p_rot.get())} }}; auto& p_mask_grid = p_mask.template get<"grid">(); // Get grid so we don't pull all the time auto p_mask_grid_dims = p_mask_grid.dims(); saw::data> p_mask_grid_shift; p_mask_grid_shift.at({{0u}}) = (p_mask_grid_dims.at({0u}).template cast_to() - 1.0) / 2.0; p_mask_grid_shift.at({{1u}}) = (p_mask_grid_dims.at({1u}).template cast_to() - 1.0) / 2.0; // Particle to Fluid Coupling // Spread force to close fluid cells iterate_over([&](const saw::data>& index){ (void)index; }, {{0u,0u}}, p_mask_grid_dims); // Fluid to Particle Coupling // Prepare force sum // saw::data> forces; iterate_over([&](const saw::data>& index){ if(p_mask_grid.at(index).get() == 0){ return; } saw::data> index_shift; index_shift.at({{0u}}) = index.at({0u}).template cast_to() - p_mask_grid_shift.at({{0u}}); index_shift.at({{1u}}) = index.at({0u}).template cast_to() - p_mask_grid_shift.at({{1u}}); saw::data> mask_shift; mask_shift.at({{0u}}) = index_shift.at({{0u}}) * x_dir.at({0u}) + index_shift.at({{1u}}) * y_dir.at({0u}); mask_shift.at({{1u}}) = index_shift.at({{0u}}) * x_dir.at({1u}) + index_shift.at({{1u}}) * y_dir.at({1u}); auto p_pos_lie = p_pos + mask_shift; // Cast down to get lower corner. // Before casting shift by 0.5 for closest pick saw::data> p_cell_pos {{ static_cast(p_pos_lie.at({{0u}}).get()+0.5), static_cast(p_pos_lie.at({{1u}}).get()+0.5) }}; p_cell_pos.at({{0u}}).set(std::max(1ul, std::min(p_cell_pos.at({{0u}}).get(), meta.at({0u}).get()-2ul))); p_cell_pos.at({{1u}}).set(std::max(1ul, std::min(p_cell_pos.at({{1u}}).get(), meta.at({1u}).get()-2ul))); // Interpolate this from close U cells. // For now pick the closest U auto& closest_u = macros.at(p_cell_pos).template get<"velocity">(); // auto p_shift = closest_u; // p_pos - p_pos_old // auto p_vel_rel = closest_u - p_vel; saw::data> p_vel_rel; p_vel_rel.at({{0u}}) = closest_u.at({0u}) - p_vel.at({{0u}}); p_vel_rel.at({{1u}}) = closest_u.at({1u}) - p_vel.at({{1u}}); for(saw::data i{0u}; i.get() < 2u; ++i){ p_acc.at({{i}}) = p_acc.at({{i}}) + p_vel_rel.at({{i}}); } // Add forces to put away from walls /// 1. Check if neighbour is wall for(saw::data k{0u}; k.get() < sch::D2Q9::Q; ++k){ auto n_p_cell_pos = saw::data> {{ p_cell_pos.at({{0u}}) + dfi::directions[k.get()][0u], p_cell_pos.at({{1u}}) + dfi::directions[k.get()][1u] }}; auto& n_cell = latt(n_p_cell_pos); auto& n_info = n_cell.template get<"info">()({0u}); auto& n_macro_cell_particle = macros.at(n_p_cell_pos).template get<"particle">(); // If neighbour is wall, then add force pushing the particle away if(n_info.get() <= 1u or (n_macro_cell_particle.get() != i.get() and n_macro_cell_particle.get() > 0u) ) { // add to p_acc saw::data dist_dot{ (p_pos.at({{0u}})-n_p_cell_pos.at({{0u}}).template cast_to()) * dfi::directions[dfi::opposite_index[k.get()]][0u]+ (p_pos.at({{1u}})-n_p_cell_pos.at({{1u}}).template cast_to()) * dfi::directions[dfi::opposite_index[k.get()]][1u] }; if(dist_dot.get() > 0){ // TODO add if particle is close p_acc.at({{0u}}) = p_acc.at({{0u}}) + saw::data{100 * dfi::directions[dfi::opposite_index[k.get()]][0u]}.template cast_to(); p_acc.at({{1u}}) = p_acc.at({{1u}}) + saw::data{100 * dfi::directions[dfi::opposite_index[k.get()]][1u]}.template cast_to(); } } } /// 2. Add force pushing away from wall // Add forces to push away from other particles }, {{0u,0u}}, p_mask_grid.dims()); p_acc.at({{0u}}).set(p_acc.at({{0u}}).get() / (p_mask.template get<"grid">().dims().at({{0u}}).get() *p_mask.template get<"grid">().dims().at({{1u}}).get() )); p_acc.at({{1u}}).set(p_acc.at({{1u}}).get() / (p_mask.template get<"grid">().dims().at({{0u}}).get() *p_mask.template get<"grid">().dims().at({{1u}}).get() )); } } void lbm_step( saw::data& latt, saw::data,kel::lbm::sch::D2Q9::D>>& macros, uint64_t time_step ){ using namespace kel::lbm; using dfi = df_info; (void) macros; bool even_step = ((time_step % 2u) == 0u); /** * 1. Relaxation parameter \tau */ component coll{0.59}; component bb; component> inlet{1.1 * dfi::cs2 * 2.0 / 3.0}; component> outlet{1.0 * dfi::cs2 * 2.0 / 3.0}; auto meta = latt.meta(); /** * Collision */ iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& info = cell.template get<"info">(); //auto& dfs = cell.template get<"dfs">(); //auto& dfs_old = cell.template get<"dfs_old">(); switch(info({0u}).get()){ case 1u: { bb.apply(latt, index, time_step); break; } case 2u: { coll.apply(latt, index, time_step); break; } case 3u: { inlet.apply(latt, index, time_step); //coll.apply(latt, index, time_step); break; } case 4u: { outlet.apply(latt, index, time_step); // coll.apply(latt, index, time_step); break; } default: break; } }, {{0u,0u}}, meta); // Stream iterate_over([&](const saw::data>& index){ auto& cell = latt(index); auto& df_new = even_step ? cell.template get<"dfs">() : cell.template get<"dfs_old">(); auto& info_new = cell.template get<"info">(); if(info_new({0u}).get() > 0u){ for(uint64_t k = 0u; k < sch::D2Q9::Q; ++k){ auto dir = dfi::directions[dfi::opposite_index[k]]; auto& cell_dir_old = latt({{index.at({0u})+dir[0],index.at({1u})+dir[1]}}); auto& df_old = even_step ? cell_dir_old.template get<"dfs_old">() : cell_dir_old.template get<"dfs">(); df_new({k}) = df_old({k}); } } }, {{0u,0u}}, meta); } int main(int argc, char** argv){ using namespace kel::lbm; using dfi = df_info; auto eo_lbm_dir = output_directory(); if(eo_lbm_dir.is_error()){ return -1; } auto& lbm_dir = eo_lbm_dir.get_value(); auto out_dir = lbm_dir / "poiseulle_particles_channel_2d"; std::string_view cfg_file_name = "config.json"; if(argc > 1){ cfg_file_name = argv[1]; } auto eo_conf = load_lbm_config>(cfg_file_name); if(eo_conf.is_error()){ auto& err = eo_conf.get_error(); std::cerr<<"[Error]: "< conv { {conf.template get<"delta_x">()}, {conf.template get<"delta_t">()} }; print_lbm_meta>(conv, {conf.template get<"kinematic_viscosity">()}); saw::data> dim{{1024u, 128u}}; saw::data lattice{dim}; auto meta = lattice.meta(); /** * Particle System */ particle_system particle_sys; add_particles(particle_sys); /** * Setup geometry */ set_geometry(lattice); { saw::data, sch::D2Q9::D>> geo{dim}; iterate_over([&](const saw::data>& index){ auto& cell = lattice(index); auto& info = cell.template get<"info">(); geo(index).template get<"info">().set(info({0u}).get()); }, {{0u,0u}}, dim); write_vtk_file(out_dir / "geometry.vtk", geo); } /** * Setup DFs */ set_initial_conditions(lattice); saw::data,sch::D2Q9::D>> macros{dim}; uint64_t lbm_steps = 10000u; for(uint64_t i = 0u; i < lbm_steps; ++i){ print_progress_bar(i,lbm_steps-1u); bool even_step = ((i % 2u) == 0u); { // Stream iterate_over([&](const saw::data>& index){ auto& cell = lattice(index); auto& dfs = even_step ? cell.template get<"dfs">() : cell.template get<"dfs_old">(); auto& macro_cell = macros.at(index); auto& rho = macro_cell.template get<"pressure">(); auto& vel = macro_cell.template get<"velocity">(); auto& force = macro_cell.template get<"force">(); auto& part_mask = macro_cell.template get<"particle">(); compute_rho_u(dfs,rho,vel); rho = rho * saw::data{dfi::cs2}; for(uint64_t d = 0u; d < sch::D2Q9::D; ++d){ force.at({d}) = cell.template get<"force">()({d}); } part_mask.set(0u); }, {{0u,0u}}, meta); for(saw::data i{0u}; i < particle_sys.size(); ++i){ auto& p = particle_sys.at({i}); auto& p_rb = p.template get<"rigid_body">(); auto& p_pos = p_rb.template get<"position">(); auto& p_mask = p.template get<"mask">(); auto& p_mask_grid = p_mask.template get<"grid">(); auto p_mask_grid_dims = p_mask_grid.dims(); saw::data> p_mask_grid_shift; p_mask_grid_shift.at({{0u}}) = (p_mask_grid_dims.at({0u}).template cast_to() - 1.0) / 2.0; p_mask_grid_shift.at({{1u}}) = (p_mask_grid_dims.at({1u}).template cast_to() - 1.0) / 2.0; // Iterate iterate_over([&](const saw::data>& index){ if(p_mask_grid.at(index).get() == 0){ return; } saw::data> index_shift; index_shift.at({{0u}}) = index.at({0u}).template cast_to() - p_mask_grid_shift.at({{0u}}); index_shift.at({{1u}}) = index.at({1u}).template cast_to() - p_mask_grid_shift.at({{1u}}); saw::data> mask_shift; mask_shift.at({{0u}}) = index_shift.at({{0u}}); mask_shift.at({{1u}}) = index_shift.at({{1u}}); auto p_pos_lie = p_pos + mask_shift; // Cast down to get lower corner. // Before casting shift by 0.5 for closest pick saw::data> p_cell_pos {{ static_cast(p_pos_lie.at({{0u}}).get()+0.5), static_cast(p_pos_lie.at({{1u}}).get()+0.5) }}; if(p_cell_pos.at({0u}) >= dim.at({0u}) ){ p_cell_pos.at({0u}).set(dim.at({0u}).get() - 1u ); } if(p_cell_pos.at({1u}) >= dim.at({1u}) ){ p_cell_pos.at({1u}).set(dim.at({1u}).get() - 1u ); } macros(p_cell_pos).template get<"particle">().set(i.get() + 1u); }, {{0u,0u}}, p_mask_grid_dims); } { std::string vtk_f_name{"macros_"}; vtk_f_name += std::to_string(i) + ".vtk"; write_vtk_file(out_dir / vtk_f_name, macros); } } couple_particles_to_lattice(particle_sys, lattice, macros, {1u}); particle_sys.step({1u}); lbm_step(lattice, macros, i); } return 0; }