forstio/source/forstio/stream_endian.h

153 lines
3.5 KiB
C++

#pragma once
#include "buffer.h"
#include "error.h"
#include <cstdint>
#include <cstring>
#include <iostream>
namespace saw {
/**
* Helper class to encode/decode any primtive type into/from litte endian.
* The shift class does this by shifting bytes. This type of procedure is
* platform independent. So it does not matter if the memory layout is
* little endian or big endian
*/
template <typename T, size_t size = sizeof(T)> class shift_stream_value;
template <typename T> class shift_stream_value<T, 1> {
public:
inline static error decode(T &val, buffer &buffer) {
uint8_t &raw = reinterpret_cast<uint8_t &>(val);
return buffer.pop(raw, sizeof(T));
}
inline static error encode(const T &val, buffer &buffer) {
const uint8_t &raw = reinterpret_cast<const uint8_t &>(val);
return buffer.push(raw, sizeof(T));
}
inline static size_t size() { return sizeof(T); }
};
template <typename T> class shift_stream_value<T, 2> {
public:
inline static error decode(T &val, buffer &buffer) {
if (buffer.read_composite_length() < sizeof(T)) {
return recoverable_error("Buffer too small");
}
uint16_t raw = 0;
for (size_t i = 0; i < sizeof(T); ++i) {
raw |= (static_cast<uint16_t>(buffer.read(i)) << (i * 8));
}
memcpy(&val, &raw, sizeof(T));
buffer.read_advance(sizeof(T));
return no_error();
}
inline static error encode(const T &val, buffer &buffer) {
error error = buffer.write_require_length(sizeof(T));
if (error.failed()) {
return error;
}
uint16_t raw;
memcpy(&raw, &val, sizeof(T));
for (size_t i = 0; i < sizeof(T); ++i) {
buffer.write(i) = raw >> (i * 8);
}
buffer.write_advance(sizeof(T));
return no_error();
}
inline static size_t size() { return sizeof(T); }
};
template <typename T> class shift_stream_value<T, 4> {
public:
inline static error decode(T &val, buffer &buffer) {
if (buffer.read_composite_length() < sizeof(T)) {
return recoverable_error("Buffer too small");
}
uint32_t raw = 0;
for (size_t i = 0; i < sizeof(T); ++i) {
raw |= (static_cast<uint32_t>(buffer.read(i)) << (i * 8));
}
memcpy(&val, &raw, sizeof(T));
buffer.read_advance(sizeof(T));
return no_error();
}
inline static error encode(const T &val, buffer &buffer) {
error error = buffer.write_require_length(sizeof(T));
if (error.failed()) {
return error;
}
uint32_t raw;
memcpy(&raw, &val, sizeof(T));
for (size_t i = 0; i < sizeof(T); ++i) {
buffer.write(i) = raw >> (i * 8);
}
buffer.write_advance(sizeof(T));
return no_error();
}
inline static size_t size() { return sizeof(T); }
};
template <typename T> class shift_stream_value<T, 8> {
public:
inline static error decode(T &val, buffer &buffer) {
if (buffer.read_composite_length() < sizeof(T)) {
return recoverable_error("Buffer too small");
}
uint64_t raw = 0;
for (size_t i = 0; i < sizeof(T); ++i) {
raw |= (static_cast<uint64_t>(buffer.read(i)) << (i * 8));
}
memcpy(&val, &raw, sizeof(T));
buffer.read_advance(sizeof(T));
return no_error();
}
inline static error encode(const T &val, buffer &buffer) {
error error = buffer.write_require_length(sizeof(T));
if (error.failed()) {
return error;
}
uint64_t raw;
memcpy(&raw, &val, sizeof(T));
for (size_t i = 0; i < sizeof(T); ++i) {
buffer.write(i) = raw >> (i * 8);
}
buffer.write_advance(sizeof(T));
return no_error();
}
inline static size_t size() { return sizeof(T); }
};
template <typename T> using stream_value = shift_stream_value<T>;
} // namespace saw